行程问题的相关例题
来源:大学生村官网
作者:佚名
行程问题的相关例题
例1 商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯级有:
A.80级 B.100级 C.120级 D.140级 (2005年中央真题)
解析;这是一个典型的行程问题的变型,总路程为“扶梯静止时可看到的扶梯级”,速度为“男孩或女孩每个单位向上运动的级数”,如果设电梯匀速时的速度为X,则可列方程如下,
(X 2)×40=(X 3/2)×50
解得X=0.5 也即扶梯静止时可看到的扶梯级数=(2 0.5)×40=100
所以,答案为B。
例2 甲、乙、丙三人沿着400米环形跑道进行800米跑比赛,当甲跑1圈时,乙比甲多跑1/7圈。丙比甲少跑1/7圈。如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面:
A.85米 B.90米 C.100米 D.105米 (2005年中央真题)
解析:此题的解题关键是要跳出微观,在宏观上进行解题。依据行程问题的公式,在时间相同的情况下,路程比等速度比,所以可知乙、甲、丙的速度比为8/7圈:1圈:6/7圈=8:7:6,所以当乙跑了2圈(800米)时,甲跑了700米,丙跑了600米。
所以,正确答案为C。
例3 某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等,假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是:
A.2.5:1 B.3:1 C.3.5:1 D.4:1 (2005年中央真题)
解析:典型流水问题。如果设逆水速度为V,设顺水速度是逆水速度的K倍,则可列如下方程:
21/KV 4/V=12/KV 7/V
将V约掉,解得K=3
所以,正确答案为B。
例4 姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。小狗追上了弟弟又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。问小狗共跑了多少米?
A.600米 B.800米 C.1200米 D.1600米 (2003年中央A类)
解析:此题将追及问题和一般路程问题结合起来,是一道经典习题。
首先求姐姐多少时间可以追上弟弟,速度差=60米/分-40米/=20米/分,追击距离=80米,所以,姐姐只要80米÷20米/分=4分种即可追上弟弟,在这4种内,小狗一直处于运动状态,所以小狗跑的路程=150米/分×4分=600米。
所以,正确答案为A。
例5 某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模的步行速度的几倍?
A.5倍 B.6倍 C.7倍 D.8倍 (2003年中央B类)
解析,如果接劳模往返需1小时,而实际上汽车2点出发,30分钟便回来,这说明遇到劳模的地点在中点,也即劳模以步行速度(时间从1点到2点15分)走的距离和汽车所行的距离(2点到2点15分)相等。设劳模的步行速度为A/小时,汽车的速度是劳模的步行速度的X倍,则可列方程
5/4A=1/4AX
解得X=5
所以,正确答案为A。
例6 一辆汽车油箱中的汽油可供它在高速公路上行驶462公里或者在城市道路上行驶336公里,每公升汽油在城市道路上比在高速公路上少行驶6公里,问每公升汽油可供该汽车在城市道路上行驶多少公里?
A.16 B.21 C.22 D.27 (2003年中央B类)
解析:基本路程问题,采用方程法,设每公升汽油可供该汽车在城市道路上行驶X公里,则可列如下方程
462÷X=336÷(X-6)
解得X=22
所以,正确答案为C。
注:此题亦可用速度差和路程差的关系来求解,速度将更快,详解过程本书略。
例7 甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是
例1 商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯级有:
A.80级 B.100级 C.120级 D.140级 (2005年中央真题)
解析;这是一个典型的行程问题的变型,总路程为“扶梯静止时可看到的扶梯级”,速度为“男孩或女孩每个单位向上运动的级数”,如果设电梯匀速时的速度为X,则可列方程如下,
(X 2)×40=(X 3/2)×50
解得X=0.5 也即扶梯静止时可看到的扶梯级数=(2 0.5)×40=100
所以,答案为B。
例2 甲、乙、丙三人沿着400米环形跑道进行800米跑比赛,当甲跑1圈时,乙比甲多跑1/7圈。丙比甲少跑1/7圈。如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面:
A.85米 B.90米 C.100米 D.105米 (2005年中央真题)
解析:此题的解题关键是要跳出微观,在宏观上进行解题。依据行程问题的公式,在时间相同的情况下,路程比等速度比,所以可知乙、甲、丙的速度比为8/7圈:1圈:6/7圈=8:7:6,所以当乙跑了2圈(800米)时,甲跑了700米,丙跑了600米。
所以,正确答案为C。
例3 某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等,假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是:
A.2.5:1 B.3:1 C.3.5:1 D.4:1 (2005年中央真题)
解析:典型流水问题。如果设逆水速度为V,设顺水速度是逆水速度的K倍,则可列如下方程:
21/KV 4/V=12/KV 7/V
将V约掉,解得K=3
所以,正确答案为B。
例4 姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。小狗追上了弟弟又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。问小狗共跑了多少米?
A.600米 B.800米 C.1200米 D.1600米 (2003年中央A类)
解析:此题将追及问题和一般路程问题结合起来,是一道经典习题。
首先求姐姐多少时间可以追上弟弟,速度差=60米/分-40米/=20米/分,追击距离=80米,所以,姐姐只要80米÷20米/分=4分种即可追上弟弟,在这4种内,小狗一直处于运动状态,所以小狗跑的路程=150米/分×4分=600米。
所以,正确答案为A。
例5 某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模的步行速度的几倍?
A.5倍 B.6倍 C.7倍 D.8倍 (2003年中央B类)
解析,如果接劳模往返需1小时,而实际上汽车2点出发,30分钟便回来,这说明遇到劳模的地点在中点,也即劳模以步行速度(时间从1点到2点15分)走的距离和汽车所行的距离(2点到2点15分)相等。设劳模的步行速度为A/小时,汽车的速度是劳模的步行速度的X倍,则可列方程
5/4A=1/4AX
解得X=5
所以,正确答案为A。
例6 一辆汽车油箱中的汽油可供它在高速公路上行驶462公里或者在城市道路上行驶336公里,每公升汽油在城市道路上比在高速公路上少行驶6公里,问每公升汽油可供该汽车在城市道路上行驶多少公里?
A.16 B.21 C.22 D.27 (2003年中央B类)
解析:基本路程问题,采用方程法,设每公升汽油可供该汽车在城市道路上行驶X公里,则可列如下方程
462÷X=336÷(X-6)
解得X=22
所以,正确答案为C。
注:此题亦可用速度差和路程差的关系来求解,速度将更快,详解过程本书略。
例7 甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是
延伸阅读:
- 由于蒲松龄把他在现实生活里所 (2008-12-26)
- 民刑口诀 (2008-12-26)
- 豆蔻是指女子多少岁? (2008-12-26)
- 顾客对这种抗衰老药剂的( )作用表示满意 (2008-12-26)
- 消毒 手术 (2008-12-26)
频道总排行